

TEMPO STM 2020 Validation

Mike Newchurch Ron Cohen and the **TEMPO, TOLNet , Pandora Science Teams**

13 August 2020

Smithsonian

www.nasa.gov

Hourly Measurement of Pollution

60 minutes

1. Summarize what we know about satellite validation from history and recognize the TEMPO opportunity.

- 1. Historically coincident, correlative measurements by ozonesondes, aircraft, balloons, satellites, space shuttle, ground-based spectrometers (FTIR, visible), iteration with theory for consistency/understanding. These **mature techniques** resulted in quite good assessment of **precision**, **bias**, **variance**, and some **spatial variance** for (usually, but not ATMOS) a small number of species, especially in the stratosphere.
- 2. Major historical limitations: **No temporal variance** or gradients on **hourly time scales**; little tropospheric-profile resolution; limited **spectroscopic validation, SZA.**
- 3. Major new science opportunities: **Spectral radiance validation** with **SZA** effects (Pandora, GeoTASO, GCAS); **Statial resolution; Temporal evolution**; Modeling capabilities at **spatio-temporal scales** from global to urban canyons with many species (gases and aerosols) and **assimilation** of multiple disparate data provide the scientific flame front.

2. Identify what approach are available for TEMPO geostationary spatiotemporal sampling and resolution retrieval assessment.

Fundamental metrics: Precision, Bias, Variance, space/time Gradients, spectroscopic.

	Pandora	Lidar	Ozonesonde	Aircraft, insitu, Geo-TASO, GCAS	Surface	Satellite
Precision	Column	Column, profile	No	Homogeneous airmass	No	No
Bias	Column, profile	Column, profile	Column, profile	Limited profile	No	Column
Variance	Column, profile	Column, profile	Column, profile	Limited profile	No	Column
Gradient (time, space)	Time		no	Space, limited time	Surface time gradient	Space
Spectroscopic validation	Yes	No	No	Yes	No	Yes
Limitation	Fixed location	1 mobile location. Ozone, aerosols, (NO2?)	Few locations. Ozone, NO2	Most a/c infrequent, cost	Bottom 2 m.	Once/day
Advantage	TEMPO-like column obs.	Temporal evolution	Heritage	Multi species, arbitrary locations, a/c simimulator	Extensive network and importance.	Continental coverage

3. (a) Set a plan to first cover the PLRA validation requirements (3 Pandoras, etc.), then,

(b) consider additional validation and science activities and campaigns.

(a) From the TEMPO **PLRA**:

"Compare space-based and ground-based retrievals of products using correlative data collected **from daytime** (solar zenith angles <70° for all products) observations at least **one month each season** from at least **three (3) ground validation sites** in the US to identify and correct regional-scale and diurnal systematic **biases** in the space-based products and to demonstrate required **precisions** in polluted clear-sky scenes to the **levels listed in [Table 2.1].**

We expect to have many more than 3 stations contribute to this baseline effort.

(b) Consider additional Science and Validation activities:

- 1. Individual and group validation activities are welcome, but no mission budget for these activities; need other support.
- 2. It's now the time to discuss science/validation aircraft/ground-based campaign (like DISCOVER-AQ et al.)
- 3. Use the TEMPO **Greenpaper** to design&execute validation & science experiments!

Validation of Tropospheric Emission Spectrometer ozone profiles with aircraft observations during the Intercontinental Chemical Transport Experiment–B

Nigel A. D. Richards,^{1,2} Gregory B. Osterman,¹ Edward V. Browell,³ Johnathan W. Hair,³ Melody Avery,³ and Qinbin Li¹

Received 15 April 2007; revised 25 October 2007; accepted 17 December 2007; published 23 May 2008.

D16S29

RICHARDS ET AL .: VALIDATION OF TES OZONE PROFILES

D16S29

TEMPO Validation-approach Goal: Quantify the Precision, Accuracy, Bias, Slope, Offset, and Variability Characteristics of TEMPO Retrievals for all Geophysical Conditions

Some important factors to consider

Spectroscopic accuracy Averaging kernel structure **TEMPO UV/VIS jointed O3P retrievals**

NASA

Smithsoniar

UV (290-340 nm) & VIS(540-650 nm), @0.6 nm, 0.2nm/pixel

Benefits of visible fitting (Natraj et al., 2011; Zoogman et al., 2017)

- UV + visible to help distinguish boundary layer O_3 from free tropospheric O_3 .

Challenges of visible fitting

1. weak O_3 absorption, strong interferences from surface reflectance and aerosols/clouds, other gases (O_4 , O_2 , H_2O)

- 2. Need accurate radiometric calibration across the spectral range
- 3. expensive RTM calculations at ~800 wavelengths

Some important factors to consider

Spectroscopic accuracy Averaging kernel structure

Spatial resolution Cloud fraction SZA Stratospheric NO₂ Albedo Local spatial and temporal variability Spatial heterogeneity Different sampling geometry Air mass factor

lalongo et al., AMT 2016

- Fig. 4 from lalongo et al.
 - Compares OMI to
 Pandora NO₂; both OMI
 SP 2.1 and 3 used
- Verified that SP 3 corrected high bias in total columns (smaller yintercept)
- Suggests an underestimate of high VCDs from OMI's perspective – resolution or a priori issue
 - (compared to Pandora)?
- Other factors: cloud fraction, SZA, Stratospheric NO₂, albedo, spatial resolution, spectral fitting.

Judd, et al., 2019

Figure 4: (a) Map of GeoTASO TropVCs on a linear color scale for the Schiller Park overflight on June 1st, 2017 at 15:55 UTC (10:55 LDT) (pink triangle in Figure 3) with the 750 m radius considered in the spatial binning of GeoTASO overlaid and an arrow depicting the Pandora viewing direction (solar azimuth angle) during the overpass time. The Pandora hexagon is colored by the NO₂ TropVC measured by Pandora during the overpass. (b) Time series showing Pandora data (black points) within approximately \pm 1 hour of the GeoTASO overpass. The Pandora temporal window for the coincidence is shaded in grey and the GeoTASO TropVC and 10th-90th percentiles from the overpass are shown in red.

Some important factors to consider

Spectroscopic accuracy Averaging kernel structure Spatial resolution Cloud fraction SZA Stratospheric NO₂ Albedo Local spatial and temporal variability Spatial heterogeneity Different sampling geometry Air mass factor

Intercomparison technique

Atmos. Chem. Phys., 10, 4725–4739, 2010 www.atmos-chem-phys.net/10/4725/2010/ doi:10.5194/acp-10-4725-2010 © Author(s) 2010. CC Attribution 3.0 License.

Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI

L. Zhang¹, D. J. Jacob^{1,2}, X. Liu^{3,4,5}, J. A. Logan², K. Chance⁴, A. Eldering⁶, and B. R. Bojkov⁷ ¹Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

The first method (in situ method) uses **in situ** vertical profiles for absolute instrument validation; it is limited by the sparseness of in situ data. The second method (CTM method) uses a chemical transport model **(CTM) as an intercomparison platform**; it provides a globally complete intercomparison with relatively small noise from model error. The third method (averaging kernel smoothing method) involves **smoothing the retrieved profile from one instrument with the averaging kernel matrix of the other**; it also provides a global intercomparison but dampens the actual difference between instruments and adds noise from the a priori.

Fig. 6. Differences between TES and OMI estimated by the CTM method (left) and by the averaging kernel (AK) smoothing method (right), relative to the in situ method at 500 hPa (black crosses) and 860 hPa (red dots). The in situ method uses ozonesonde profiles for 2006 as absolute validation. The data are for 180 TES/OMI/sonde coincidences in 2006. Correlation coefficients (*r*) and slopes of the reduced-major-axis regression lines (sl) are shown inset. Reduced-major-axis regression lines (solid) and the 1:1 line (dashed) are also shown.

List of factors to get right for confident validation

Geophysical factors:

- Albedo
- Local spatial and temporal variability
- 4D heterogeneity
- Spatial resolution
- Cloud fraction
- Stratospheric NO₂

Analysis approach:

- Spectroscopic accuracy
- Averaging kernel structure
- SZA
- Sampling geometry
- Air mass factor
- Intercomparison technique